Mi Secundaria: TRANSFORMACIONES DE LA ENERGÍA

domingo, 12 de diciembre de 2010

TRANSFORMACIONES DE LA ENERGÍA

La energía aparece en muchas formas, incluida la radiación, el movimiento de los cuerpos, el estado de excitación de los átomos y la tensión intra e intermolecular. Todas estas formas son equivalentes en un sentido importante; es decir, una forma puede transformarse en otra. La mayor parte de lo que sucede en el universo como el colapso y la explosión de estrellas, el crecimiento y la descomposición biológica, la operación de máquinas y computadoras incluye una forma de energía que se transforma en otra.
Las formas de energía se pueden describir de diferentes maneras: la energía del sonido es sobre todo el movimiento regular de atrás hacia adelante de las moléculas; la energía calorífica es el movimiento aleatorio de moléculas; la energía gravitacional aparece en la separación de masas que se atraen mutuamente; la energía almacenada en tensiones mecánicas incluye la separación de cargas eléctricas que se atraen entre sí. Aunque las diversas formas parecen muy distintas, cada una de ellas se puede medir de un modo que hace posible calcular qué tanto de una forma puede convertirse en otra. Cuando disminuye la cantidad de energía en un lugar o en una forma, la cantidad en otro sitio o en otra forma aumenta en una cantidad equivalente. Por tanto, si la energía no se filtra hacia dentro o hacia fuera a través de los límites de un sistema, la energía total de las diferentes formas en el sistema no cambia, no importa qué tipo de transformaciones graduales o violentas ocurran realmente en él.
Pero la energía tiende a escaparse a través de los límites. En particular, las transformaciones de energía generalmente dan por resultado la producción de algo de calor, el cual se disipa por radiación o conducción (como sucede en las máquinas, los alambres eléctricos, los tanques de agua caliente, el cuerpo humano y los sistemas estereofónicos). Además, cuando el calor sufre conducción o radiación hacia un líquido, se establecen corrientes que suelen favorecer la transferencia de calor. Los materiales que no conducen bien el calor se pueden utilizar para reducir la pérdida de éste, aunque nunca puede evitarse por completo la fuga calorífica. Por tanto, la cantidad total de energía disponible para la transformación casi siempre es decreciente. Por ejemplo, casi toda la energía almacenada en las moléculas de gasolina que se utiliza durante un viaje en automóvil se disipa a través de la fricción y el tubo de escape, produciendo un ligero aumento de temperatura en el vehículo, la carretera y el aire. Pero incluso si tal energía difusa se pudiera detener, tendería a distribuirse de modo uniforme y, por tanto, ya no podría volverse a utilizar. Esto se debe a que la energía puede provocar transformaciones solamente cuando se concentra más en algunos sitios que en otros, como en las caídas de agua, las moléculas de alta energía de combustibles y alimentos, los núcleos inestables y la radiación que proviene del Sol intensamente caliente. Cuando la energía se transforma en energía calorífica que se difunde a todas partes, es menos probable que ocurran más transformaciones.
La razón por la que el calor tiende siempre a difundirse de lugares más calientes a otros más fríos es un asunto de probabilidad. La energía calorífica en un material consiste de movimientos desordenados de sus átomos o moléculas que se encuentran en colisión perpetua. Cuando un gran número de átomos o moléculas en una región de un material chocan en forma aleatoria y repetida con las de una región vecina, hay mucho más maneras en las que su energía de movimiento aleatorio puede terminar por distribuirse casi igualmente en ambas regiones en lugar de concentrarse en una sola. Por consiguiente, es mucho más probable que ocurra la distribución desordenada de energía calorífica a todas partes que la concentración más ordenada en un lugar. De manera más general, en cualesquiera interacciones de átomos o moléculas, la probabilidad estadística establece que terminarán en un mayor desorden que con el que empezaron.
Sin embargo, es completamente posible que en algunos sistemas aumente el orden mientras que en los sistemas conectados a ellos el desorden se incrementa aún más. Las células de un organismo humano, por ejemplo, siempre están ocupadas en incrementar el orden, como sucede en la síntesis de moléculas complejas y la formación de estructuras corporales. Pero esto ocurre al costo de aumentar el desorden circundante aún más como descomponer la estructura molecular de los alimentos que se consumen y calentar los alrededores. El asunto es que la cantidad total de desorden tiende siempre a aumentar.
Se asocian diferentes niveles de energía con diversas configuraciones de átomos en las moléculas. Algunos cambios en la configuración requieren energía adicional, en tanto que otros la liberan. Por ejemplo, tiene que suministrarse energía calorífica para iniciar el fuego con carbón (mediante la evaporación, algunos átomos de carbono se separan de otros en el carbón); sin embargo, cuando las moléculas de oxígeno se combinan con los átomos de carbono en la configuración de baja energía de una molécula de dióxido de carbono, se libera mucho más energía como calor y luz. O una molécula de clorofila se puede excitar hacia una configuración de alta energía por la luz solar; la clorofila, por su parte, excita a las moléculas de dióxido de carbono y agua de modo tal que pueden unirse, a través de varios pasos, en la configuración de alta energía de una molécula de azúcar (más cierta cantidad de oxígeno regenerado). Más tarde, la molécula de azúcar puede interactuar con el oxígeno para producir moléculas de dióxido de carbono y agua otra vez, transfiriendo la energía adicional de la luz solar todavía a otras moléculas.
Es evidente que la energía y la materia se presentan en unidades discretas en el nivel molecular y niveles inferiores: cuando la energía de un átomo o una molécula cambia de un valor a otro, lo hace en saltos definidos, sin valores posibles entre ellos. Estos efectos de cuanto producen fenómenos en la escala atómica muy diferentes de aquéllos con los que se está familiarizado. Cuando la radiación encuentra un átomo, puede excitarlo a un nivel más alto de energía interna solamente si puede aportar la cantidad correcta de energía para el paso. También ocurre lo inverso: cuando el nivel de energía de un átomo se relaja por un paso, se produce una cantidad discreta (cuanto) de energía de radiación. Por tanto, la luz emitida o absorbida por una sustancia puede servir para identificar de qué sustancia se trata, no importa si está en el laboratorio o en la superficie de una estrella distante.
Las reacciones en los núcleos de los átomos incluyen cambios de energía mucho más grandes que las reacciones entre las estructuras de los electrones externos de los átomos (esto es, reacciones químicas). Cuando núcleos muy pesados, como los de uranio o plutonio se dividen en otros de peso medio, o cuando núcleos muy ligeros, como los de hidrógeno y helio, se combinan con otros más pesados, se liberan grandes cantidades de energía en forma de radiación y partículas que se mueven con rapidez. La fisión de algunos núcleos pesados ocurre de manera espontánea, produciendo neutrones adicionales que inducen la fisión en más núcleos, y así sucesivamente, dando lugar a una reacción en cadena. Sin embargo, la fisión de núcleos ocurre solamente que choquen a velocidades muy altas (superando la repulsión eléctrica entre ellos), como las colisiones que ocurren a temperaturas muy altas producidas dentro de una estrella o por una explosión por fisión.

No hay comentarios:

Publicar un comentario

Exa Radio